Search results for "Stone's representation theorem for Boolean algebras"

showing 4 items of 4 documents

On Rough Sets in Topological Boolean Algebras

1994

We have focused on rough sets in topological Boolean algebras. Our main ideas on rough sets are taken from concepts of Pawlak [4] and certain generalizations of his constructions which were offered by Wiweger [7]. One of the most important results of this note is a characterization of the rough sets determined by regular open and regular closed elements.

Discrete mathematicsInterior algebraRough setField of setsBoolean algebras canonically definedCharacterization (mathematics)Stone's representation theorem for Boolean algebrasTopologyComplete Boolean algebraMathematics
researchProduct

Conditioning on MV-algebras and additive measures —I

1997

Abstract We present a lattice-ordered semigroup approach for the foundation of conditional events which covers the special situations where the underlying (unconditional) events are Boolean or fuzzy, respectively. Our proposal is quite different from other, ring theoretical, approaches. The problem of extending additivity of uncertainty measures from unconditional to conditional events will be discussed.

AlgebraArtificial IntelligenceLogicTwo-element Boolean algebraFuzzy setFuzzy numberBoolean expressionStone's representation theorem for Boolean algebrasBoolean algebras canonically definedComplete Boolean algebraFuzzy logicMathematicsFuzzy Sets and Systems
researchProduct

Rough Set Algebras as Description Domains

2009

Study of the so called knowledge ordering of rough sets was initiated by V.W. Marek and M. Truszczynski at the end of 90-ies. Under this ordering, the rough sets of a fixed approximation space form a domain in which every set ↓ is a Boolean algebra. In the paper, an additional operation inversion on rough set domains is introduced and an abstract axiomatic description of obtained algebras of rough set is given. It is shown that the resulting class of algebras is essentially different from those traditional in rough set theory: it is not definable, for instance, in the class of regular double Stone algebras, and conversely.

Discrete mathematicsAlgebra and Number TheoryA domainSpace formInversion (discrete mathematics)Theoretical Computer ScienceInterior algebraComputational Theory and MathematicsRough setField of setsStone's representation theorem for Boolean algebrasAxiomInformation SystemsMathematicsFundamenta Informaticae
researchProduct

Equivalence Relations on Stonian Spaces

1996

Abstract Quotient spaces of locally compact Stonian spaces which generalize in some sense the concept of Stone representation space of a Boolean algebra are investigated emphasizing the measure theoretical point of view, and a representation theorem for finitely additive measures is proved.

Mathematics(all)Representation theoremquotient spaceRiesz–Markov–Kakutani representation theoremGeneral Mathematicsba spacerepresentation of a space of measuresQuotient space (linear algebra)Stone representation spaceAlgebranormal Radon measureStonian spaceEquivalence relationLocally compact spaceStone's representation theorem for Boolean algebrasQuotientfinitely additive measureMathematicsAdvances in Mathematics
researchProduct